High efficiency gene transfer to human hematopoietic SCID-repopulating cells under serum-free conditions.
نویسندگان
چکیده
Stable gene transfer to human pluripotent hematopoietic stem cells (PHSCs) is an attractive strategy for the curative treatment of many genetic hematologic disorders. In clinical trials, the levels of gene transfer to this cell population have generally been low, reflecting deficiencies in both the vector systems and transduction conditions. In this study, we have used a pseudotyped murine retroviral vector to transduce human CD34(+) cells purified from bone marrow (BM) and umbilical cord blood (CB) under optimized conditions. After transduction, 71% to 97% of the hematopoietic cells were found to express a low-affinity nerve growth factor receptor (LNGFR) marker gene. Six weeks after transplantation into immunodeficient NOD/LtSz-scid/scid (NOD/SCID) mice, LNGFR expression was detected in 6% to 57% of CD45(+) cells in eight of nine engrafted animals. Moreover, proviral DNA was detected in 8.3% to 45% of secondary colonies derived from BM cells of engrafted NOD/SCID mice. Our data show consistent transduction of SCID-repopulating cells (SRCs) and suggest that the efficiency of gene transfer to human hematopoietic repopulating cells can be improved using existing retroviral vector systems and carefully optimized transduction conditions.
منابع مشابه
Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential.
Recent studies have shown efficient gene transfer to primitive progenitors in human cord blood (CB) when the cells are incubated in retrovirus-containing supernatants on fibronectin-coated dishes. We have now used this approach to achieve efficient gene transfer to human CB cells with the capacity to regenerate lymphoid and myeloid progeny in nonobese diabetic (NOD)/severe combined immunodefici...
متن کاملTransduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors.
The efficiency of gene transfer into human hematopoietic stem cells by oncoretroviral vectors is too low for effective gene therapy of most hematologic diseases. Retroviral vectors based on the nonpathogenic foamy viruses (FV) are an alternative gene-transfer system. In this study, human umbilical cord blood CD34(+) cells were transduced with FV vectors by a single 10-h exposure to vector stock...
متن کاملLentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells.
This study reports a lentiviral gene transfer protocol for efficient transduction of adult human peripheral blood (PB)-derived CD34+ NOD/SCID-repopulating cells (SRCs) using vesicular stomatitis virus-G protein (VSV-G)-pseudotyped lentiviruses encoding for enhanced green fluorescence protein (eGFP). Lentiviral stocks were concentrated by anion exchange chromatography, and transduction was perfo...
متن کاملExpansion of human SCID-repopulating cells under hypoxic conditions.
It has been proposed that bone marrow (BM) hematopoietic stem and progenitor cells are distributed along an oxygen (O2) gradient, where stem cells reside in the most hypoxic areas and proliferating progenitors are found in O2-rich areas. However, the effects of hypoxia on human hematopoietic stem cells (HSCs) have not been characterized. Our objective was to evaluate the functional and molecula...
متن کاملLentiviral gene transfer into primary and secondary NOD/SCID repopulating cells.
The ability of lentiviral vectors to transfer genes into human hematopoietic stem cells was studied, using a human immunodeficiency virus 1 (HIV-1)-derived vector expressing the green fluorescence protein (GFP) downstream of the phosphoglycerate kinase (PGK) promoter and pseudotyped with the G protein of vesicular stomatitis virus (VSV). High-efficiency transduction of human cord blood CD34(+) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 92 9 شماره
صفحات -
تاریخ انتشار 1998